Press Release
Oncotarget: Genome wide DNA methylation landscape reveals glioblastoma's influence
FOR IMMEDIATE RELEASE
2021-06-21
Oncotarget published "Genome wide DNA methylation landscape reveals glioblastoma's influence on epigenetic changes in tumor infiltrating CD4+ T cells" which reported that whole-genome bisulfite sequencing of tumor infiltrating and blood CD4 T-cell from GBM patients showed 13571 differentially methylated regions and a distinct methylation pattern of methylation of tumor infiltrating CD4 T-cells with significant inter-patient variability.
The methylation changes also resulted in transcriptomic changes with 341 differentially expressed genes in CD4 tumor infiltrating T-cells compared to blood.
Analysis of specific genes involved in CD4 differentiation and function revealed differential methylation status of TBX21, GATA3, RORC, FOXP3, IL10 and IFNG in tumor CD4 T-cells.
Interestingly, the authors observed dysregulation of several ligands of T cell function genes in GBM tissue corresponding to the T-cell receptors that were dysregulated in tumor infiltrating CD4 T-cells.
These Oncotarget results suggest that GBM might induce epigenetic alterations in tumor infiltrating CD4 T-cells there by influencing anti-tumor immune response by manipulating differentiation and function of tumor infiltrating CD4 T-cells.
These Oncotarget results suggest that GBM might induce epigenetic alterations in tumor infiltrating CD4 T-cells
Dr. Mahua Dey from The University of Wisconsin-Madison as well as The Indiana University School of Medicine said, "Naïve CD4+ helper T cell population is known for its polyfunctionality and highly plastic characteristics."
In the tumor microenvironment, lineage commitments of CD4 T cells reflect initiation of new programs of gene expression within tumor infiltrating naïve T cells.
The GBM tumor microenvironment is known to be extremely immunosuppressive, possessing multiple unique properties including:
- Impaired cellular immunity no dearth of tumor infiltrating T cells
- High levels of TGFβ secreted by resident as well as circulating microglia and
- Expression of several inhibitory ligands, eliciting anergy and apoptosis of cytotoxic lymphocytes in the TME, immune checkpoints expression, and increased infiltration of immunosuppressive cells.
Genome wide methylation sequencing showed 13571 uniquely differentially methylated regions , mostly concentrated around the TSS, in the CD4 T cells from GBM patient tumor compared to blood.
Furthermore, combining transcriptomic data from RNAseq analysis with DNA methylation, we observed differential methylation of gene sets specific for CD4 T cells including Th1, Th2, Th17 and iTregs in GBM tumors, although with significant interpatient variability.
In conclusion, this data for the first time, report unique DNA methylation pattern and gene expression profiles in GBM associated tumor infiltrating CD4 T cells compared to CD4 T-cell from the blood of the same patient and some of their ligands on the GBM cells suggesting that CD4 T cells function and differentiation may be influenced by the GBM TME by way of epigenetic mechanisms such as, DNA methylation.
The Dey Research Team concluded in their Oncotarget Research Output, "in the present clinical corelative report, we demonstrated that differential DNA methylation pattern might influence gene expression in tumor infiltering CD4+ T cells as compared to circulating blood CD4+ T cells in GBM patients. Our findings provide evidence that GBM might be influencing the state of tumor infiltrating CD4+ T cells by epigenetic modification in the form of DNA methylation of key immune function regulating genes and influencing the fate of helper T cells in the GBM TME. Based on our observations we believe that perhaps epigenetic interaction between GBM and tumor infiltrating CD4+ T cells is responsible for the immunosuppressed state seen in the GBM patients. Our data convincingly show that there is significant inter-patient variability in the GBM tumor ligand expression of various T-cell modulating ligands and consequently striking differences in the methylation pattern and gene expression in tumor infiltrating CD4+ T-cells. This has a very strong implication for selecting future patients for immunotherapy trials who will have better likelihood of responding to immunotherapy than others based on their tumor immune signature. The findings from our corelative study needs to be further validated in the experimental setting."
DOI - https://doi.org/10.18632/oncotarget.27955
Full text - https://www.oncotarget.com/article/27955/text/
Correspondence to - Mahua Dey - dey@neurosurgery.wisc.edu
Keywords - glioblastoma, malignant glioma, CD4+ T cell, DNA methylation, brain cancer
About Oncotarget
Oncotarget is a bi-weekly, peer-reviewed, open access biomedical journal covering research on all aspects of oncology.
To learn more about Oncotarget, please visit https://www.oncotarget.com or connect with:
SoundCloud - https://soundcloud.com/oncotarget
Facebook - https://www.facebook.com/Oncotarget/
Twitter - https://twitter.com/oncotarget
LinkedIn - https://www.linkedin.com/company/oncotarget
Pinterest - https://www.pinterest.com/oncotarget/
Reddit - https://www.reddit.com/user/Oncotarget/
Oncotarget is published by Impact Journals, LLC please visit https://www.ImpactJournals.com or connect with @ImpactJrnls
Media Contact
MEDIA@IMPACTJOURNALS.COM
18009220957x105
Copyright © 2024 Impact Journals, LLC
Impact Journals is a registered trademark of Impact Journals, LLC