Press Release
Validation of a Comprehensive Genomic Profiling Assay: NeXT Dx™
FOR IMMEDIATE RELEASE
2023-08-30
“NeXT Dx incorporates a range of features and comprehensive genome variant detection methods that lead to improved disease management and possible enhanced clinical utility.”
BUFFALO, NY- August 30, 2023 – A new research paper was published in Oncotarget's Volume 14 on August 30, 2023, entitled, “Analytic validation of NeXT Dx™, a comprehensive genomic profiling assay.”
In this new research paper, researchers Juan-Sebastian Saldivar, Jason Harris, Erin Ayash, Manqing Hong, Prateek Tandon, Saloni Sinha, Patricia Miranda Hebron, Erin E. Houghton, Kaleigh Thorne, Laurie J. Goodman, Conan Li, Twinkal R. Marfatia, Joshua Anderson, Massimo Morra, John Lyle, Gabor Bartha, and Richard Chen from Personalis, Inc. describe the analytic validation of NeXT Dx, a comprehensive genomic profiling assay to aid therapy and clinical trial selection for patients diagnosed with solid tumor cancers.
“The NeXT Dx clinical report currently provides the ordering clinician with information from 401 cancer-related genes on clinically relevant mutations, as well as related drug response associations and a curated list of clinical trials that may be applicable to the patient.”
Proprietary methods were utilized to perform whole exome and whole transcriptome sequencing for detection of single nucleotide variants (SNVs), insertions/deletions (indels), copy number alterations (CNAs), and gene fusions, and determination of tumor mutation burden and microsatellite instability. Variant calling is enhanced by sequencing a patient-specific normal sample from, for example, a blood specimen. This provides highly accurate somatic variant calls as well as the incidental reporting of pathogenic and likely pathogenic germline alterations. Fusion detection via RNA sequencing provides more extensive and accurate fusion calling compared to DNA-based tests.
NeXT Dx features the proprietary Accuracy and Content Enhanced technology, developed to optimize sequencing and provide more uniform coverage across the exome. The exome was validated at a median sequencing depth of >500x. While variants from 401 cancer-associated genes are currently reported from the assay, the exome/transcriptome assay is broadly validated to enable reporting of additional variants as they become clinically relevant. NeXT Dx demonstrated analytic sensitivities as follows: SNVs (99.4%), indels (98.2%), CNAs (98.0%), and fusions (95.8%). The overall analytic specificity was >99.0%.
“By more comprehensively characterizing the molecular characteristics of each patient’s tumor, NeXT Dx provides personalized recommendations critical to clinical decision-making with respect to current FDA-approved drug-variant specific treatments and evolving treatment opportunities via enrollment in clinical trials.”
Read the full research paper: DOI: https://doi.org/10.18632/oncotarget.28490
Correspondence to: Richard Chen
Email: richard.chen@Personalis.com
Keywords: comprehensive genomic profiling, whole exome sequencing, whole transcriptome sequencing, tumor-normal, precision medicine
About Oncotarget: Oncotarget (a primarily oncology-focused, peer-reviewed, open-access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science.
To learn more about Oncotarget, visit Oncotarget.com and connect with us on social media:
Twitter
Facebook
YouTube
Instagram
LinkedIn
Pinterest
LabTube
SoundCloud
Sign up for free Altmetric alerts about this article: https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28408
Click here to subscribe to Oncotarget publication updates.
For media inquiries, please contact: media@impactjournals.com.
Oncotarget Journal Office
6666 East Quaker Str., Suite 1A
Orchard Park, NY 14127
Phone: 1-800-922-0957 (option 2)
Copyright © 2024 Impact Journals, LLC
Impact Journals is a registered trademark of Impact Journals, LLC